Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurol Genet ; 10(2): e200129, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38715655

RESUMO

Background and Objectives: Pathogenic variants in GRIN2A are associated with a spectrum of epilepsy-aphasia syndromes (EASs). Seizures as well as speech and language disorders occur frequently but vary widely in severity, both between individuals and across the life span. The link between this phenotypic spectrum and brain characteristics is unknown. Specifically, altered brain networks at the root of speech and language deficits remain to be identified. Patients with pathogenic variants in GRIN2A offer an opportunity to interrogate the impact of glutamate receptor dysfunction on brain development. Methods: We characterized brain anomalies in individuals with pathogenic GRIN2A variants and EASs, hypothesizing alterations in perisylvian speech-language regions and the striatum. We compared structural MRI data from 10 individuals (3 children and 7 adults, 3 female) with pathogenic GRIN2A variants with data from age-matched controls (N = 51 and N = 203 in a secondary analysis). We examined cortical thickness and volume in 4 a priori hypothesized speech and language regions (inferior frontal, precentral, supramarginal, and superior temporal) and across the whole brain. Subcortical structures (hippocampus, basal ganglia, thalamus) and the corpus callosum were also compared. Results: Individuals with pathogenic GRIN2A variants showed increased thickness and volume in the posterior part of Broca's area (inferior frontal gyrus, pars opercularis). For thickness, the effects were bilateral but more pronounced in the left (large effect size, η2 = 0.37) than the right (η2 = 0.12) hemisphere. Both volume and thickness were also higher in the bilateral superior temporal region while the supramarginal region showed increased thickness only. Whole-brain analyses confirmed left-sided thickness increases in Broca's area, with additional increases in the occipital and superior frontal cortices bilaterally. Hippocampal volume was reduced in the left hemisphere. There were no age-dependent effects or corpus callosum group differences. Discussion: Anomalies in perisylvian regions, with largest differences in Broca's area, suggest an altered development of classical speech-language networks in GRIN2A-related EAS. Left hippocampal reduction suggests a role for this structure in early speech and language development and is consistent with GRIN2A gene expression in that region. Overall, elucidating the neural correlates of EAS provides insights into the impact of GRIN2A dysfunction, opening avenues for targeted intervention in developmental syndromes with compromised speech-language development.

2.
Dev Med Child Neurol ; 66(3): 362-378, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37667426

RESUMO

AIM: This study aimed to (1) quantify attention and executive functioning in children with developmental coordination disorder (DCD), (2) assess whether some children with DCD are more likely to show attention difficulties, and (3) characterize brain correlates of motor and attention deficits. METHOD: Fifty-three children (36 with DCD and 17 without) aged 8 to 10 years underwent T1-weighted and diffusion-weighted magnetic resonance imaging, and standardized attention and motor assessments. Parents completed questionnaires of executive functioning and symptoms of inattention and hyperactivity. We assessed regional cortical thickness and surface area, and cerebellar, callosal, and primary motor tract structure. RESULTS: Analyses of covariance and one-sample t-tests identified impaired attention, non-motor processing speed, and executive functioning in children with DCD, yet partial Spearman's rank correlation coefficients revealed these were unrelated to one another or the type or severity of the motor deficit. Robust regression analyses revealed that cortical morphology in the posterior cingulate was associated with both gross motor skills and inattentive symptoms in children with DCD, while gross motor skills were also associated with left corticospinal tract (CST) morphology. INTERPRETATION: Children with DCD may benefit from routine attention and hyperactivity assessments. Alterations in the posterior cingulate and CST may be linked to impaired forward modelling during movements in children with DCD. Overall, alterations in these regions may explain the high rate of non-motor impairments in children with DCD. WHAT THIS PAPER ADDS: Children with developmental coordination disorder have difficulties in attention, processing speed, and executive functioning. Non-motor impairments were not interrelated or correlated with the type or severity of motor deficit. Posterior cingulate morphology was associated with gross motor skills and inattention. Gross motor skills were also associated with left corticospinal tract morphology.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtornos das Habilidades Motoras , Criança , Humanos , Transtornos das Habilidades Motoras/psicologia , Encéfalo/diagnóstico por imagem , Função Executiva , Cognição , Neuroimagem , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Destreza Motora
3.
Brain ; 146(12): 5086-5097, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977818

RESUMO

Stuttering is a common speech disorder that interrupts speech fluency and tends to cluster in families. Typically, stuttering is characterized by speech sounds, words or syllables which may be repeated or prolonged and speech that may be further interrupted by hesitations or 'blocks'. Rare variants in a small number of genes encoding lysosomal pathway proteins have been linked to stuttering. We studied a large four-generation family in which persistent stuttering was inherited in an autosomal dominant manner with disruption of the cortico-basal-ganglia-thalamo-cortical network found on imaging. Exome sequencing of three affected family members revealed the PPID c.808C>T (p.Pro270Ser) variant that segregated with stuttering in the family. We generated a Ppid p.Pro270Ser knock-in mouse model and performed ex vivo imaging to assess for brain changes. Diffusion-weighted MRI in the mouse revealed significant microstructural changes in the left corticospinal tract, as previously implicated in stuttering. Quantitative susceptibility mapping also detected changes in cortico-striatal-thalamo-cortical loop tissue composition, consistent with findings in affected family members. This is the first report to implicate a chaperone protein in the pathogenesis of stuttering. The humanized Ppid murine model recapitulates network findings observed in affected family members.


Assuntos
Gagueira , Humanos , Animais , Camundongos , Gagueira/genética , Gagueira/patologia , Peptidil-Prolil Isomerase F , Fala , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mapeamento Encefálico
4.
Brain ; 145(3): 1177-1188, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35296891

RESUMO

Developmental stuttering is a condition of speech dysfluency, characterized by pauses, blocks, prolongations and sound or syllable repetitions. It affects around 1% of the population, with potential detrimental effects on mental health and long-term employment. Accumulating evidence points to a genetic aetiology, yet gene-brain associations remain poorly understood due to a lack of MRI studies in affected families. Here we report the first neuroimaging study of developmental stuttering in a family with autosomal dominant inheritance of persistent stuttering. We studied a four-generation family, 16 family members were included in genotyping analysis. T1-weighted and diffusion-weighted MRI scans were conducted on seven family members (six male; aged 9-63 years) with two age and sex matched controls without stuttering (n = 14). Using Freesurfer, we analysed cortical morphology (cortical thickness, surface area and local gyrification index) and basal ganglia volumes. White matter integrity in key speech and language tracts (i.e. frontal aslant tract and arcuate fasciculus) was also analysed using MRtrix and probabilistic tractography. We identified a significant age by group interaction effect for cortical thickness in the left hemisphere pars opercularis (Broca's area). In affected family members this region failed to follow the typical trajectory of age-related thinning observed in controls. Surface area analysis revealed the middle frontal gyrus region was reduced bilaterally in the family (all cortical morphometry significance levels set at a vertex-wise threshold of P < 0.01, corrected for multiple comparisons). Both the left and right globus pallidus were larger in the family than in the control group (left P = 0.017; right P = 0.037), and a larger right globus pallidus was associated with more severe stuttering (rho = 0.86, P = 0.01). No white matter differences were identified. Genotyping identified novel loci on chromosomes 1 and 4 that map with the stuttering phenotype. Our findings denote disruption within the cortico-basal ganglia-thalamo-cortical network. The lack of typical development of these structures reflects the anatomical basis of the abnormal inhibitory control network between Broca's area and the striatum underpinning stuttering in these individuals. This is the first evidence of a neural phenotype in a family with an autosomal dominantly inherited stuttering.


Assuntos
Gagueira , Substância Branca , Área de Broca/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética , Masculino , Gagueira/diagnóstico por imagem , Gagueira/genética
5.
Neurology ; 95(23): 1043-1056, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33087498

RESUMO

OBJECTIVE: To conduct a systematic review on language outcomes after left and right hemispherectomy in childhood, a surgical procedure that involves removing or disconnecting a cerebral hemisphere. METHODS: We searched MEDLINE, Embase, and PsycInfo for articles published between January 1, 1988, and May 16, 2019. We included (1) all types of observational studies; (2) studies in which hemispherectomy was performed before age 18 years; and (3) studies with standardized scores measuring receptive vocabulary, expressive vocabulary, sentence comprehension, and/or sentence production. We calculated mean z scores after left and right hemispherectomy in the whole group and within etiology-specific subgroups. RESULTS: Our search identified 1,096 studies, of which 17 were eligible. The cohort added up to 205 individuals (62% left hemispherectomy) assessed 1 to 15 years after surgery. In the left surgery group, all language skills were impaired (z scores <-1.5) except sentence comprehension. In the right surgery group, language performance was in the borderline range (z scores ∼ -1.5). Children with cortical dysplasia showed the worst outcomes irrespective of surgery side (z scores <-2.5). Individuals with left vascular etiology and right-sided Rasmussen syndrome showed the best outcomes. CONCLUSION: Evidence based on the largest patient cohort to date (205 participants) suggests that the risk of language impairment after hemispherectomy is high, with few exceptions. Etiology plays a major role in postsurgical plasticity. We recommend specialist evaluation of language skills soon after surgery to identify intervention targets. Large-scale studies examining outcomes in consecutive cases are still needed.


Assuntos
Encefalopatias/cirurgia , Hemisferectomia/efeitos adversos , Transtornos da Linguagem/etiologia , Avaliação de Resultados em Cuidados de Saúde , Adolescente , Adulto , Criança , Humanos
6.
Neurology ; 94(20): e2148-e2167, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32345733

RESUMO

OBJECTIVE: Determining the genetic basis of speech disorders provides insight into the neurobiology of human communication. Despite intensive investigation over the past 2 decades, the etiology of most speech disorders in children remains unexplained. To test the hypothesis that speech disorders have a genetic etiology, we performed genetic analysis of children with severe speech disorder, specifically childhood apraxia of speech (CAS). METHODS: Precise phenotyping together with research genome or exome analysis were performed on children referred with a primary diagnosis of CAS. Gene coexpression and gene set enrichment analyses were conducted on high-confidence gene candidates. RESULTS: Thirty-four probands ascertained for CAS were studied. In 11/34 (32%) probands, we identified highly plausible pathogenic single nucleotide (n = 10; CDK13, EBF3, GNAO1, GNB1, DDX3X, MEIS2, POGZ, SETBP1, UPF2, ZNF142) or copy number (n = 1; 5q14.3q21.1 locus) variants in novel genes or loci for CAS. Testing of parental DNA was available for 9 probands and confirmed that the variants had arisen de novo. Eight genes encode proteins critical for regulation of gene transcription, and analyses of transcriptomic data found CAS-implicated genes were highly coexpressed in the developing human brain. CONCLUSION: We identify the likely genetic etiology in 11 patients with CAS and implicate 9 genes for the first time. We find that CAS is often a sporadic monogenic disorder, and highly genetically heterogeneous. Highly penetrant variants implicate shared pathways in broad transcriptional regulation, highlighting the key role of transcriptional regulation in normal speech development. CAS is a distinctive, socially debilitating clinical disorder, and understanding its molecular basis is the first step towards identifying precision medicine approaches.


Assuntos
Apraxias/genética , Distúrbios da Fala/genética , Fala/fisiologia , Fatores de Transcrição/genética , Adolescente , Apraxias/diagnóstico , Apraxias/fisiopatologia , Criança , Pré-Escolar , Feminino , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Estudos de Associação Genética , Humanos , Masculino , Distúrbios da Fala/diagnóstico , Distúrbios da Fala/fisiopatologia
7.
Front Hum Neurosci ; 13: 45, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837853

RESUMO

Children born preterm are at risk of impairments in oromotor control, with implications for early feeding and speech development. In this study, we aimed to identify (a) neuroanatomical markers of persistent oromotor deficits using diffusion-weighted imaging (DWI) tractography and (b) evidence of compensatory neuroplasticity using functional MRI (fMRI) during a language production task. In a cross-sectional study of 36 adolescents born very preterm (<33 weeks' gestation) we identified persistent difficulties in oromotor control in 31% of cases, but no clinical diagnoses of speech-sound disorder (e.g., dysarthria, dyspraxia). We used DWI-tractography to examine the microstructure (fractional anisotropy, FA) of the corticospinal and corticobulbar tracts. Compared to the unimpaired group, the oromotor-impaired group showed (i) reduced FA within the dorsal portion of the left corticobulbar tract (containing fibres associated with movements of the lips, tongue, and larynx) and (ii) greater recruitment of right hemisphere language regions on fMRI. We conclude that, despite the development of apparently normal everyday speech, early injury to the corticobulbar tract leads to persistent subclinical problems with voluntary control of the face, lips, jaw, and tongue. Furthermore, we speculate that early speech problems may be ameliorated by cerebral plasticity - in particular, recruitment of right hemisphere language areas.

8.
Brain ; 142(4): 966-977, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30796815

RESUMO

Speech disorders are highly prevalent in the preschool years, but frequently resolve. The neurobiological basis of the most persistent and severe form, apraxia of speech, remains elusive. Current neuroanatomical models of speech processing in adults propose two parallel streams. The dorsal stream is involved in sound to motor speech transformations, while the ventral stream supports sound/letter to meaning. Data-driven theories on the role of these streams during atypical speech and language development are lacking. Here we provide comprehensive behavioural and neuroimaging data on a large novel family where one parent and 11 children presented with features of childhood apraxia of speech (the same speech disorder associated with FOXP2 variants). The genetic cause of the disorder in this family remains to be identified. Importantly, in this family the speech disorder is not systematically associated with language or literacy impairment. Brain MRI scanning in seven children revealed large grey matter reductions over the left temporoparietal region, but not in the basal ganglia, relative to typically-developing matched peers. In addition, we detected white matter reductions in the arcuate fasciculus (dorsal language stream) bilaterally, but not in the inferior fronto-occipital fasciculus (ventral language stream) nor in primary motor pathways. Our findings identify disruption of the dorsal language stream as a novel neural phenotype of developmental speech disorders, distinct from that reported in speech disorders associated with FOXP2 variants. Overall, our data confirm the early role of this stream in auditory-to-articulation transformations. 10.1093/brain/awz018_video1 awz018media1 6018582401001.


Assuntos
Distúrbios da Fala/genética , Distúrbios da Fala/fisiopatologia , Percepção da Fala/genética , Adolescente , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Família , Feminino , Humanos , Idioma , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa , Vias Neurais , Neuroimagem , Linhagem , Fala/fisiologia , Percepção da Fala/fisiologia
9.
Pediatr Neurol ; 92: 55-59, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30594525

RESUMO

BACKGROUND: The association between left hemisphere stroke and acute speech and language impairment is well documented in adults. However, little is known about this association in childhood arterial ischemic stroke. Here we examined potential predictors of acute speech (dysarthria and apraxia) and language impairments after childhood arterial ischemic stroke, including site of lesion. METHODS: Children with radiologically confirmed acute arterial ischemic stroke, admitted to a tertiary pediatric hospital from 2004 to 2012, were identified from an institutional registry. We examined the prevalence of dysarthria, apraxia, and language impairment within two weeks of the stroke. Associations with age at stroke event, lesion side (left, right, or bilateral), and arterial territory affected (anterior, posterior, or both) were assessed using logistic regression. RESULTS: Sixty-two children with mean age eight years (range three to 17 years) were identified. Strokes were located in the left (32%), right (44%), or both hemispheres (24%). Dysarthria (74%) and language impairment (50%) were frequent. Verbal dyspraxia was less common (11%). There was little evidence that variables of interest, including site of lesion, were significantly associated with increased odds of dysarthria or language impairment (all P > 0.49). CONCLUSIONS: Regardless of age, children are at high risk of communication disorders after stroke. Unlike adults, left hemisphere stroke was not associated with either speech or language impairment in our cohort, suggesting there may be bihemispheric contribution to language function. Future studies are needed to examine whether the predictors examined here determine long-term outcomes.


Assuntos
Apraxias/fisiopatologia , Isquemia Encefálica/fisiopatologia , Lateralidade Funcional/fisiologia , Doenças Arteriais Intracranianas/fisiopatologia , Transtornos da Linguagem/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Adolescente , Apraxias/epidemiologia , Apraxias/etiologia , Isquemia Encefálica/complicações , Isquemia Encefálica/epidemiologia , Criança , Pré-Escolar , Disartria/epidemiologia , Disartria/etiologia , Disartria/fisiopatologia , Feminino , Humanos , Doenças Arteriais Intracranianas/complicações , Doenças Arteriais Intracranianas/epidemiologia , Transtornos da Linguagem/epidemiologia , Transtornos da Linguagem/etiologia , Masculino , Risco , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/epidemiologia
10.
Cochrane Database Syst Rev ; 5: CD006278, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29845607

RESUMO

BACKGROUND: Childhood apraxia of speech (CAS) affects a child's ability to produce sounds and syllables precisely and consistently, and to produce words and sentences with accuracy and correct speech rhythm. It is a rare condition, affecting only 0.1% of the general population. Consensus has been reached that three core features have diagnostic validity: (1) inconsistent error production on both consonants and vowels across repeated productions of syllables or words; (2) lengthened and impaired coarticulatory transitions between sounds and syllables; and (3) inappropriate prosody (ASHA 2007). A deficit in motor programming or planning is thought to underlie the condition. This means that children know what they would like to say but there is a breakdown in the ability to programme or plan the fine and rapid movements required to accurately produce speech. Children with CAS may also have impairments in one or more of the following areas: non-speech oral motor function, dysarthria, language, phonological production impairment, phonemic awareness or metalinguistic skills and literacy, or combinations of these. High-quality evidence from randomised controlled trials (RCTs) is lacking on interventions for CAS. OBJECTIVES: To assess the efficacy of interventions targeting speech and language in children and adolescents with CAS as delivered by speech and language pathologists/therapists. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, eight other databases and seven trial registers up to April 2017. We searched the reference lists of included reports and requested information on unpublished trials from authors of published studies and other experts as well as information groups in the areas of speech and language therapy/pathology and linguistics. SELECTION CRITERIA: RCTs and quasi-RCTs of children aged 3 to 16 years with CAS diagnosed by a speech and language pathologist/therapist, grouped by treatment types. DATA COLLECTION AND ANALYSIS: Two review authors (FL, AM) independently assessed titles and abstracts identified from the searches and obtained full-text reports of all potentially relevant articles and assessed these for eligibility. The same two authors extracted data and conducted the 'Risk of bias' and GRADE assessments. One review author (EM) tabulated findings from excluded observational studies (Table 1). MAIN RESULTS: This review includes only one RCT, funded by the Australian Research Council; the University of Sydney International Development Fund; Douglas and Lola Douglas Scholarship on Child and Adolescent Health; Nadia Verrall Memorial Scholarship; and a James Kentley Memorial Fellowship. This study recruited 26 children aged 4 to 12 years, with mild to moderate CAS of unknown cause, and compared two interventions: the Nuffield Dyspraxia Programme-3 (NDP-3); and the Rapid Syllable Transitions Treatment (ReST). Children were allocated randomly to one of the two treatments. Treatments were delivered intensively in one-hour sessions, four days a week for three weeks, in a university clinic in Australia. Speech pathology students delivered the treatments in the English language. Outcomes were assessed before therapy, immediately after therapy, at one month and four months post-therapy. Our review looked at one-month post-therapy outcomes only.We judged all core outcome domains to be low risk of bias. We downgraded the quality of the evidence by one level to moderate due to imprecision, given that only one RCT was identified. Both the NDP-3 and ReST therapies demonstrated improvement at one month post-treatment. A number of cases in each cohort had recommenced usual treatment by their speech and language pathologist between one month and four months post-treatment (NDP-3: 9/13 participants; ReST: 9/13 participants). Hence, maintenance of treatment effects to four months post-treatment could not be analysed without significant potential bias, and thus this time point was not included for further analysis in this review.There is limited evidence that, when delivered intensively, both the NDP-3 and ReST may effect improvement in word accuracy in 4- to 12-year-old children with CAS, measured by the accuracy of production on treated and non-treated words, speech production consistency and the accuracy of connected speech. The study did not measure functional communication. AUTHORS' CONCLUSIONS: There is limited evidence that, when delivered intensively, both the NDP-3 and ReST may effect improvement in word accuracy in 4- to 12-year-old children with CAS, measured by the accuracy of production on treated and non-treated words, speech production consistency and the accuracy of connected speech. The study did not measure functional communication. No formal analyses were conducted to compare NDP-3 and ReST by the original study authors, hence one treatment cannot be reliably advocated over the other. We are also unable to say whether either treatment is better than no treatment or treatment as usual. No evidence currently exists to support the effectiveness of other treatments for children aged 4 to 12 years with idiopathic CAS without other comorbid neurodevelopmental disorders. Further RCTs replicating this study would strengthen the evidence base. Similarly, further RCTs are needed of other interventions, in other age ranges and populations with CAS and with co-occurring disorders.


Assuntos
Apraxias/terapia , Distúrbios da Fala/terapia , Fonoterapia , Patologia da Fala e Linguagem , Criança , Pré-Escolar , Humanos
11.
J Pediatr ; 198: 234-239.e1, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29705112

RESUMO

OBJECTIVE: To characterize the organization of speech- and language-related white matter tracts in children with developmental speech and/or language disorders. STUDY DESIGN: We collected magnetic resonance diffusion-weighted imaging data from 41 children, ages 9-11 years, with developmental speech and/or language disorders, and compared them with 45 typically developing controls with the same age range. We used probabilistic tractography of diffusion-weighted imaging to map language (3 segments of arcuate fasciculus, extreme capsule system) and speech motor (corticobulbar) tracts bilaterally. The corticospinal and callosal tracts were used as control regions. We compared the mean fractional anisotropy and diffusivity values between atypical and control groups, covarying for nonverbal IQ. We then examined differences between atypical subgroups: developmental speech disorder (DSD), developmental language disorder, and co-occurring developmental speech and language disorder. RESULTS: Fractional anisotropy in the left corticobulbar tract was lower in the DSD than in the control group. Radial and mean diffusivity were higher in the DSD than the developmental language disorder, co-occurring developmental speech and language disorder, or control groups. There were no group differences for any metrics in the language or control tracts. CONCLUSIONS: Atypical development of the left corticobulbar tract may be a neural marker for DSD. This finding is in line with reports of speech disorder after left corticobulbar damage in children and adults with brain injury. By contrast, we found no association between diffusion metrics in language-related tracts in developmental language disorder, and changes for language disorders are likely more complex.


Assuntos
Transtornos do Desenvolvimento da Linguagem/diagnóstico por imagem , Tratos Piramidais/diagnóstico por imagem , Distúrbios da Fala/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Anisotropia , Estudos de Casos e Controles , Criança , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino
12.
Sci Rep ; 6: 35192, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27734906

RESUMO

FOXP2 is the major gene associated with severe, persistent, developmental speech and language disorders. While studies in the original family in which a FOXP2 mutation was found showed volume reduction and reduced activation in core language and speech networks, there have been no imaging studies of different FOXP2 mutations. We conducted a multimodal MRI study in an eight-year-old boy (A-II) with a de novo FOXP2 intragenic deletion. A-II showed marked bilateral volume reductions in the hippocampus, thalamus, globus pallidus, and caudate nucleus compared with 26 control males (effect sizes from -1 to -3). He showed no detectable functional MRI activity when repeating nonsense words. The hippocampus is implicated for the first time in FOXP2 diseases. We conclude that FOXP2 anomaly is either directly or indirectly associated with atypical development of widespread subcortical networks early in life.


Assuntos
Fatores de Transcrição Forkhead/genética , Deleção de Sequência/genética , Criança , Códon sem Sentido/genética , Hipocampo/metabolismo , Humanos , Idioma , Transtornos da Linguagem/genética , Transtornos da Linguagem/metabolismo , Imageamento por Ressonância Magnética/métodos , Masculino , Mutação/genética , Neuroimagem/métodos , Fala/fisiologia
13.
Curr Opin Pediatr ; 28(6): 725-730, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27662370

RESUMO

PURPOSE OF REVIEW: Developmental speech and language disorders are common, seen in one in 20 preschool children, in the absence of frank neurological deficits or intellectual impairment. They are a key reason parents seek help from paediatricians. Complex neurogenetic and environmental contributions underpin the disorders, yet few specific causes are known. With the advent of quantitative brain imaging, a growing number of studies have investigated neural contributions. Here, we discuss current MRI approaches and recent findings (January 2014-June 2016) in the field. RECENT FINDINGS: Five relevant studies were identified (n = 3 - speech disorder and n = 2 - language disorder). Significant variability in MRI approaches and heterogeneity of participant phenotypes was seen. Children with speech disorder had structural and functional anomalies in the left supramarginal gyrus and functional anomalies in the posterior cerebellum bilaterally - regions critical for sensory-motor integration or feedback. Children with language disorder showed increased mean and radial diffusivity of the left arcuate fasciculus, although a widespread cortical and subcortical network of regions was implicated. SUMMARY: Limited evidence exists for specific regional brain anomalies in this population. MRI prognostic markers of speech and language ability are not currently available at an individual level. Further work is required to disentangle neurobiological contributions to speech and language disorders for affected children.


Assuntos
Transtornos do Desenvolvimento da Linguagem/diagnóstico por imagem , Transtornos do Desenvolvimento da Linguagem/etiologia , Imageamento por Ressonância Magnética , Distúrbios da Fala/diagnóstico por imagem , Distúrbios da Fala/etiologia , Mapeamento Encefálico , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Pré-Escolar , Humanos , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Distúrbios da Fala/fisiopatologia
14.
Brain Struct Funct ; 221(6): 3337-45, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26411871

RESUMO

The left hemisphere lateralization bias for language functions, such as syntactic processing and semantic retrieval, is well known. Although several theories and clinical data indicate a link between speech motor execution and language, the functional and structural brain lateralization for these functions has never been examined concomitantly in the same individuals. Here, we used functional MRI during rapid silent syllable repetition (/lalala/, /papapa/ and /pataka/, known as oral diadochokinesis or DDK) to map the cortical representation of the articulators in 17 healthy adults. In these same participants, functional lateralization for language production was assessed using the well-established verb generation task. We then used DDK-related fMRI activation clusters to guide tractography of the corticobulbar tract from diffusion-weighted MRI. Functional MRI revealed a wide inter-individual variability of hemispheric asymmetry patterns (left and right dominant, as well as bilateral) for DDK in the motor cortex, despite predominantly left hemisphere dominance for language-related activity in Broca's area. Tractography revealed no evidence for structural asymmetry (based on fractional anisotropy) within the corticobulbar tract. To our knowledge, this study is the first to reveal that motor brain activation for syllable repetition is unrelated to functional asymmetry for language production in adult humans. In addition, we found no evidence that the human corticobulbar tract is an asymmetric white matter pathway. We suggest that the predominance of dysarthria following left hemisphere infarct is probably a consequence of disrupted feedback or input from left hemisphere language and speech planning regions, rather than structural asymmetry of the corticobulbar tract itself.


Assuntos
Lateralidade Funcional , Córtex Motor/anatomia & histologia , Tratos Piramidais/anatomia & histologia , Tratos Piramidais/fisiologia , Fala , Adulto , Mapeamento Encefálico , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Individualidade , Imageamento por Ressonância Magnética , Masculino , Atividade Motora , Córtex Motor/fisiologia , Córtex Sensório-Motor/anatomia & histologia , Córtex Sensório-Motor/fisiologia , Substância Branca/anatomia & histologia , Substância Branca/fisiologia , Adulto Jovem
15.
Brain Lang ; 127(3): 388-98, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23756046

RESUMO

Pediatric traumatic brain injury (TBI) may result in long-lasting language impairments alongside dysarthria, a motor-speech disorder. Whether this co-morbidity is due to the functional links between speech and language networks, or to widespread damage affecting both motor and language tracts, remains unknown. Here we investigated language function and diffusion metrics (using diffusion-weighted tractography) within the arcuate fasciculus, the uncinate fasciculus, and the corpus callosum in 32 young people after TBI (approximately half with dysarthria) and age-matched healthy controls (n=17). Only participants with dysarthria showed impairments in language, affecting sentence formulation and semantic association. In the whole TBI group, sentence formulation was best predicted by combined corpus callosum and left arcuate volumes, suggesting this "dual blow" seriously reduces the potential for functional reorganisation. Word comprehension was predicted by fractional anisotropy in the right arcuate. The co-morbidity between dysarthria and language deficits therefore seems to be the consequence of multiple tract damage.


Assuntos
Lesões Encefálicas/fisiopatologia , Encéfalo/fisiopatologia , Disartria/fisiopatologia , Idioma , Adolescente , Criança , Pré-Escolar , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino
16.
Brain ; 136(Pt 2): 646-57, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23378215

RESUMO

Severe and persistent speech disorder, dysarthria, may be present for life after brain injury in childhood, yet the neural correlates of this chronic disorder remain elusive. Although abundant literature is available on language reorganization after lesions in childhood, little is known about the capacity of motor speech networks to reorganize after injury. Here, we examine the structural and functional neural correlates associated with chronic dysarthria after childhood-onset traumatic brain injury. Forty-nine participants aged 12 years 3 months to 24 years 11 months were recruited to the study: (i) a group with chronic dysarthria (n = 17); matched for age and sex with two control groups of (ii) healthy control subjects (n = 17); and (iii) individuals without dysarthria after traumatic brain injury (n = 15). A high-resolution 3D T(1)-weighted whole-brain data set was acquired for voxel-based morphometry analyses of group differences in grey matter. Functional magnetic resonance imaging was used to localize activation associated with speaking single words (baseline: listening to words). Group differences on voxel-based morphometry revealed widespread grey matter reductions in the dysarthric group compared with healthy control subjects, including in numerous speech motor regions bilaterally, such as the cerebellum, the basal ganglia and primary motor cortex representation of the articulators. Relative to the non-dysarthric traumatic brain injury group, individuals with dysarthria showed reduced grey matter bilaterally in the ventral sensorimotor cortex, but this reduction was concomitant with increased functional activation only in the left-hemisphere cluster during speech. Finally, increased recruitment of Broca's area (Brodmann area 45, pars triangularis) but not its right homologue, correlated with better speech outcome, suggesting that this 'higher-level' area may be more critically involved with production when associated motor speech regions are damaged. We suggest that the bilateral morphological abnormalities within cortical speech networks in childhood prevented reorganization of speech function from the left- to right-hemisphere. Rather, functional reorganization involved over-recruitment of left-hemisphere motor regions, a reorganization method that was only partly relatively effective, given the presence of persisting yet mild speech deficits. The bilateral structural abnormalities found to limit functional reorganization here, may also be critical to poor speech prognosis for populations with congenital, degenerative or acquired neurological disorders throughout the lifespan.


Assuntos
Lesões Encefálicas/diagnóstico , Cérebro/fisiologia , Disartria/diagnóstico , Lateralidade Funcional/fisiologia , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Adolescente , Adulto , Lesões Encefálicas/epidemiologia , Lesões Encefálicas/fisiopatologia , Criança , Disartria/epidemiologia , Disartria/fisiopatologia , Humanos , Imageamento por Ressonância Magnética/métodos , Plasticidade Neuronal/fisiologia , Método Simples-Cego , Fala/fisiologia , Adulto Jovem
17.
Neurosci Biobehav Rev ; 36(1): 439-58, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21827785

RESUMO

Current models of speech production in adults emphasize the crucial role played by the left perisylvian cortex, primary and pre-motor cortices, the basal ganglia, and the cerebellum for normal speech production. Whether similar brain-behaviour relationships and leftward cortical dominance are found in childhood remains unclear. Here we reviewed recent evidence linking motor speech disorders (apraxia of speech and dysarthria) and brain abnormalities in children and adolescents with developmental, progressive, or childhood-acquired conditions. We found no evidence that unilateral damage can result in apraxia of speech, or that left hemisphere lesions are more likely to result in dysarthria than lesion to the right. The few studies reporting on childhood apraxia of speech converged towards morphological, structural, metabolic or epileptic anomalies affecting the basal ganglia, perisylvian and rolandic cortices bilaterally. Persistent dysarthria, similarly, was commonly reported in individuals with syndromes and conditions affecting these same structures bilaterally. In conclusion, for the first time we provide evidence that longterm and severe childhood speech disorders result predominantly from bilateral disruption of the neural networks involved in speech production.


Assuntos
Mapeamento Encefálico , Córtex Cerebral , Deficiências do Desenvolvimento/patologia , Lateralidade Funcional/fisiologia , Plasticidade Neuronal/fisiologia , Distúrbios da Fala/patologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Criança , Deficiências do Desenvolvimento/complicações , Humanos , Neuroimagem , Distúrbios da Fala/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...